Panier d’achat

Aucun produit dans le panier.

Capteur Ultrasonic HC-SR04

Le prix initial était : 30.00 د.م..Le prix actuel est : 25.00 د.م..

260 en stock

Quantité Discount (%) Prix
1 - 49 25.00 د.م.
50+ 28 % 18.00 د.م.
UGS : CM035 Catégories : , Étiquettes : , ,

Tutoriel : Comment mesurer une distance avec un capteur Ultrasonic et une carte Arduino


À l’anglaise : avec votre pouce, votre pied, ou n’importe quoi en fait. God save the queen.

Pour mesurer des distances, il faut un capteur de distance (s’en blague !). Il existe sur le marché un grand nombre de capteurs de distance : infrarouge (réflectif), laser (par temps de parcours ou par calcul d’angle), physique (règles optiques absolues ou incrémentielles), ou ultrason.

  • Les capteurs infrarouges ont l’avantage d’être bon marché, relativement précis et disponibles à peu près partout. Malheureusement, ils sont assez complexes à mettre en oeuvre du fait de leurs non-linéarités. Il faut appliquer une formule complexe pour obtenir une mesure utilisable. De plus, ils sont très sensibles à la lumière ambiante et au coefficient de réflexion lumineuse de la surface en face du capteur.

  • Les (vrais) capteurs de distance laser sont extrêmement précis, mais aussi extrêmement chers. Un capteur de distance laser (par mesure de temps de parcours) coûte facilement plus de 200€, mais fait des mesures à plus de 30 mètres sans problème pour certains modèles. C’est donc au final une question de budget / utilisation.

    PS Il existe des (faux) capteurs de distance laser fonctionnant par triangulation. Au lieu de mesurer le temps d’aller-retour d’un faisceau laser, ces modules calculent l’angle entre le point du laser et le capteur. Ces modules sont moins chers, mais aussi beaucoup moins précis.

  • Les capteurs physiques, le plus souvent un duo comportant une règle graduée et un capteur optique, sont à la fois bon marché et très précis. Mais ils sont très limités en distance mesurable et se retrouvent donc généralement dans des imprimantes.

Reste les capteurs ultrasons, et ça tombe bien, c’est le sujet de cet article.

Un capteur de distance à ultrason utilise le même principe qu’un capteur laser, mais en utilisant des ondes sonores (inaudible) au lieu d’un faisceau de lumière. Ils sont bien moins chers qu’un capteur laser, mais aussi bien moins précis. Cependant, contrairement aux capteurs à infrarouge, la lumière ambiante et l’opacité de la surface en face du capteur ne jouent pas sur la mesure.


Le capteur HC-SR04

Le capteur qui nous intéresse dans ce tutoriel est un capteur à ultrason made in chinois, bien connu des amateurs de robotique et d’Arduino : le HC-SR04 (aussi disponible sous d’autres références en fonction du vendeur).

Le capteur HC-SR04 est un capteur à ultrason low cost. Ce capteur fonctionne avec une tension d’alimentation de 5 volts, dispose d’un angle de mesure de 15° environ et permet de faire des mesures de distance entre 2 centimètres et 4 mètres avec une précision de 3mm (en théorie, dans la pratique ce n’est pas tout à fait exact).


Principe de fonctionnement du capteur

Illustration du signal entrant / sortant d'un capteur HC-SR04

Illustration du signal TRIGGER et ECHO

Le principe de fonctionnement du capteur est entièrement basé sur la vitesse du son.

Voilà comment se déroule une prise de mesure :

  1. On envoie une impulsion HIGH de 10µs sur la broche TRIGGER du capteur.

  2. Le capteur envoie alors une série de 8 impulsions ultrasoniques à 40KHz (inaudible pour l’être humain, c’est quand plus agréable qu’un biiiiiiiip).

  3. Les ultrasons se propagent dans l’air jusqu’à toucher un obstacle et retourne dans l’autre sens vers le capteur.

  4. Le capteur détecte l’écho et clôture la prise de mesure.

Le signal sur la broche ECHO du capteur reste à HIGH durant les étapes 3 et 4, ce qui permet de mesurer la durée de l’aller-retour des ultrasons et donc de déterminer la distance.

N.B. Il y a toujours un silence de durée fixe après l’émission des ultrasons pour éviter de recevoir prématurément un écho en provenance directement du capteur.


Matériel nécessaire

Pour réaliser ce premier montage, il va nous falloir :

Vue prototypage du montage de mesure de distances

Vue prototypage du montage

Le montage est d’une simplicité déconcertante :

  • L’alimentation 5V de la carte Arduino va sur la broche VCC du capteur.

  • La broche GND de la carte Arduino va sur la broche GND du capteur.

  • La broche D2 de la carte Arduino va sur la broche TRIGGER du capteur.

  • La broche D3 de la carte Arduino va sur la broche ECHO du capteur.Vous pouvez choisir d’utiliser d’autres broches que D2 et D3 si vous le souhaitez. Il suffira de mettre à jour les numéros de broches dans le code du chapitre suivant.

N.B. La plaque d’essai est ici totalement optionnelle. Si vous avez des fils mâles / femelles, vous pouvez directement câbler le capteur à la carte Arduino.


Le code

Au final, le plus compliqué dans ce tutoriel, c’est le code

/* Constantes pour les broches */
const byte TRIGGER_PIN = 2; // Broche TRIGGER
const byte ECHO_PIN = 3; // Broche ECHO

/* Constantes pour le timeout */
const unsigned long MEASURE_TIMEOUT = 25000UL; // 25ms = ~8m à 340m/s

/* Vitesse du son dans l'air en mm/us */
const float SOUND_SPEED = 340.0 / 1000;

On commence le code avec quatre constantes : deux constantes pour les broches TRIGGER et ECHO du capteur, une constante qui servira de timeout pour la prise de mesure et une constante pour définir la vitesse du son.

Le timeout correspond au temps nécessaire avant de considérer qu’il n’y a pas d’obstacle, donc pas de mesure possible. J’ai choisi d’utiliser une timeout de 25 millisecondes (4 mètres aller-retour à 340m/s).

N.B. Vous remarquerez que j’ai déclaré la vitesse du son en millimètres par microseconde. Cela est nécessaire, car la mesure du temps se fait en microsecondes et je souhaite avoir un résultat en millimètres en sortie du calcul.

void setup() {

/* Initialise le port série */
Serial.begin(115200);

/* Initialise les broches */
pinMode(TRIGGER_PIN, OUTPUT);
digitalWrite(TRIGGER_PIN, LOW); // La broche TRIGGER doit être à LOW au repos
pinMode(ECHO_PIN, INPUT);
}

La fonction setup() initialise le port série, met la broche TRIGGER du capteur en sortie et à LOW, et met la broche ECHO du capteur en entrée. Rien de bien palpitant.

void loop() {

/* 1. Lance une mesure de distance en envoyant une impulsion HIGH de 10µs sur la broche TRIGGER */
digitalWrite(TRIGGER_PIN, HIGH);
delayMicroseconds(10);
digitalWrite(TRIGGER_PIN, LOW);

/* 2. Mesure le temps entre l'envoi de l'impulsion ultrasonique et son écho (si il existe) */
long measure = pulseIn(ECHO_PIN, HIGH, MEASURE_TIMEOUT);

/* 3. Calcul la distance à partir du temps mesuré */
float distance_mm = measure / 2.0 * SOUND_SPEED;

/* Affiche les résultats en mm, cm et m */
Serial.print(F("Distance: "));
Serial.print(distance_mm);
Serial.print(F("mm ("));
Serial.print(distance_mm / 10.0, 2);
Serial.print(F("cm, "));
Serial.print(distance_mm / 1000.0, 2);
Serial.println(F("m)"));

/* Délai d'attente pour éviter d'afficher trop de résultats à la seconde */
delay(500);
}

La fonction loop() s’occupe de la mesure et de l’affichage.

Elle génère d’abord l’impulsion HIGH de 10µs qui déclenche la prise de mesure. Elle mesure ensuite le temps nécessaire a pour un aller-retour du signal ultrason avec la fonction pulseIn(). Pour finir, elle calcule la distance avant de l’afficher sur le port série.

N.B. La fonction pulseIn() retourne 0 si le temps de timeout est atteint. Il est donc possible de gérer l’absence d’obstacle si vous le souhaitez avec un if (measure == 0) { ... } par exemple.

PS La valeur retournée par pulseIn() doit être divisée par deux avant de faire le calcul de distance. Un aller-retour est égal à deux fois la distance mesurée.


Le code complet avec commentaires :

/* 
* Code d'exemple pour un capteur à ultrasons HC-SR04.
* Visite notre site megma.ma
*/

/* Constantes pour les broches */
const byte TRIGGER_PIN = 2; // Broche TRIGGER
const byte ECHO_PIN = 3; // Broche ECHO

/* Constantes pour le timeout */
const unsigned long MEASURE_TIMEOUT = 25000UL; // 25ms = ~8m à 340m/s

/* Vitesse du son dans l'air en mm/us */
const float SOUND_SPEED = 340.0 / 1000;

/** Fonction setup() */
void setup() {

/* Initialise le port série */
Serial.begin(115200);

/* Initialise les broches */
pinMode(TRIGGER_PIN, OUTPUT);
digitalWrite(TRIGGER_PIN, LOW); // La broche TRIGGER doit être à LOW au repos
pinMode(ECHO_PIN, INPUT);
}

/** Fonction loop() */
void loop() {

/* 1. Lance une mesure de distance en envoyant une impulsion HIGH de 10µs sur la broche TRIGGER */
digitalWrite(TRIGGER_PIN, HIGH);
delayMicroseconds(10);
digitalWrite(TRIGGER_PIN, LOW);

/* 2. Mesure le temps entre l'envoi de l'impulsion ultrasonique et son écho (si il existe) */
long measure = pulseIn(ECHO_PIN, HIGH, MEASURE_TIMEOUT);

/* 3. Calcul la distance à partir du temps mesuré */
float distance_mm = measure / 2.0 * SOUND_SPEED;

/* Affiche les résultats en mm, cm et m */
Serial.print(F("Distance: "));
Serial.print(distance_mm);
Serial.print(F("mm ("));
Serial.print(distance_mm / 10.0, 2);
Serial.print(F("cm, "));
Serial.print(distance_mm / 1000.0, 2);
Serial.println(F("m)"));

/* Délai d'attente pour éviter d'afficher trop de résultats à la seconde */
delay(500);
}

L’extrait de code ci-dessus est disponible en téléchargement sur cette page (le lien de téléchargement en .zip contient le projet Arduino prêt à l’emploi).


Plus d’informations visite notre page Facebook.


Avis

Il n’y a pas encore d’avis.

Soyez le premier à laisser votre avis sur “Capteur Ultrasonic HC-SR04”

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Tous les résultats de recherche
×